4” Model 316F-60 Flanged Valve
Horizontal or Vertical Flow

<table>
<thead>
<tr>
<th>Nominal Pipe Size</th>
<th>Length</th>
<th>Height</th>
<th>Diameter</th>
<th>Weight</th>
<th>Application Data</th>
<th>Bolt Holes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4”</td>
<td>7-1/2”</td>
<td>10-7/8”</td>
<td>9”</td>
<td>20 lbs</td>
<td>60 psig</td>
<td>7-1/2” ¾”</td>
</tr>
</tbody>
</table>

Specifications & Response To Seismic Disturbance

- Manual Reset
- High flow efficiency with minimal pressure drop
- Positive closure, soft seal seating
- Visual open-close indicator
- Made in the USA
- Meets ASCE 25-97

The valve shall close within five seconds when subjected to a horizontal, sinusoidal oscillation with the following characteristics:

- Peak Acceleration 0.7G
- Period 0.13 Seconds
- Peak Acceleration 0.4G
- Period 0.2 Seconds
- Peak Acceleration 0.3G
- Period 0.4 Seconds
- Peak Acceleration 0.25G
- Period 1.00 Seconds

The valve shall not close when subjected for five seconds to each of three horizontal, sinusoidal oscillations with the following characteristics:

- Peak Acceleration 0.4G
- Period 0.1 Seconds
- Peak Acceleration 0.2G
- Period 0.2 Seconds
- Peak Acceleration 0.15G
- Period 0.40 Seconds
- Peak Acceleration 0.10G
- Period 1.00 Seconds
Capacity Charts
Capacity charts represent CFH of natural gas at 60° F

Use the following charts to determine the approximate loss of pressure (in inches water column) through the valve.
1. Identify maximum inlet pressure to the valve.
2. Identify maximum Cubic Feet/Hour - CFH
3. See Column 1 for the pressure drop.

<table>
<thead>
<tr>
<th>Delta P</th>
<th>Operating Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>"W.C."</td>
<td>1 PSI</td>
</tr>
<tr>
<td>0.5</td>
<td>18,933</td>
</tr>
<tr>
<td>1</td>
<td>26,760</td>
</tr>
<tr>
<td>2</td>
<td>37,801</td>
</tr>
<tr>
<td>5</td>
<td>59,563</td>
</tr>
</tbody>
</table>

Horizontal Flow
316F-60

Vertical Flow – Down
VT316F-60

Vertical Flow - Up
VB316F-60